Completing the Square

Think about $x^2 + 8x + 16$.

This can be written $(x+4)^2$.

The expression $x^2 + 8x + 16$ is a perfect square trinomial.

Perfect square trinomials: $a^2 - 2ab + b^2 = (a-b)^2$ and $a^2 + 2ab + b^2 = (a+b)^2$

Necessary Conditions for a Perfect Square Trinomial

- 4. The first term must have a positive coefficient and be a perfect square, a^2 .
- 5. The last term must have a positive coefficient and be a perfect square, b^2 .
- 6. The middle term must be twice the product of the bases of the first and last terms, 2ab or -2ab.

Is $x^2 + 16x + 64$ a Perfect Square Trinomial? YES – since it can be factored: $(x+8)^2$

Perfect square trinomials are created when a binomial is squared.

Think about the following: $x^2 + 6x + ?$

What number could be used for the ? to create a perfect square trinomial?

$$x^{2}+6x+9$$
 or $(x+3)^{2}$

Complete the following perfect square trinomial: $(x + _)^2 = x^2 + 10x + ?$ 5 25

Now think of the process in reverse. What values make these into perfect square trinomials?

$$x^{2} + 14x + \underline{\qquad} = (x + \underline{\qquad})^{2}$$
 $x^{2} - 12x + \underline{\qquad} = (x - \underline{\qquad})^{2}$
 $36 - 6^{2}$

© Dr. Susan Harrison

What process will always work for $ax^2 + bx + c = 0$ when a=1?

$x^{2} + 14x + \{(x+_)^{2}}$	$x^{2} + 14x + \underline{49}$ $\downarrow \downarrow^{1/2}$ $(x + \underline{7})^{2}$	 Be sure the sign of the <i>b</i> term in the trinomial is the same as the sign in the binomial. Take ½ of the coefficient of the <i>b</i> term of the trinomial and place it in the blank of the binomial. Square the last term of the binomial and use the result for the <i>c</i> term of the trinomial.
$x^{2} - 12x + \underline{36}$ $(x - \underline{6})^{2}$	$x^{2} - 5x + \frac{\frac{2^{5}}{4}}{\sqrt{1}}$ $(x - \frac{5}{2})^{2}$	$x^{2} + \frac{6}{7\sqrt{1}} x + \frac{9}{49}$ Even if the <i>b</i> is a fraction, still take ½ of $(x + \frac{3}{1})^{2}$ it.

Completing the Square

The process of transforming the quadratic equation $ax^2 + bx + c = 0$ into the form $(x+q)^2 = k$ where q and k are constants is called **completing the square**.

If one knows the first and second terms, one can find the last term to make a perfect square trinomial. It is *the square of* $\frac{1}{2}$ of the coefficient of the middle term.

TRY:

 $m^{2} + 14m + _ \qquad w^{2} - 5w + _ \qquad p^{2} + \frac{6}{5}p + _ _ \\(m + _)^{2} \qquad (w - _)^{2} \qquad (p + _)^{2}$

Do you see how easily these perfect square trinomials can be factored? TRY THESE.

$$y^{2} - 10y + 25 \qquad \qquad w^{2} + w + \frac{1}{4} \qquad \qquad m^{2} - \frac{6}{5}m + \frac{9}{25}$$
$$(y - 5)^{2} \qquad \qquad \left(w + \frac{1}{2}\right)^{2} \qquad \qquad \left(m - \frac{3}{5}\right)^{2}$$