Rational Expressions: Least Common Denominator

<u>Finding the Least Common Denominator</u> (the least expression that is divisible by the denominator of each of the rational expressions) <u>for Polynomials</u>

- 1. Factor each denominator polynomial completely. Use exponents to express repeated factors.
- 2. Write the product of all of the different factors that appear in the polynomials.
- 3. For each factor, use the highest power of that factor in any of the polynomials.

Use a Factor-tree table. Find the LCD for $\frac{2}{15x^2} + \frac{5}{12x}$:

				$1 J \lambda$	141		
$\frac{2}{15x^2}$	3	5	Х	Х			
$\frac{5}{12x}$	3		Х		2	2	
LCD:	3	5	Χ	Χ	2	2	$= 60x^2$

Use a Factor-tree table. Find the LCD for $\frac{1}{x^2+5x+6} + \frac{1}{x^2+6x+6}$:

	$x^{2} + 5x + 6 x^{2} + 6x + 9$						
$\frac{1}{x^2 + 5x + 6}$	(x+2)	(x+3)					
$\frac{1}{x^2 + 6x + 9}$		(x+3)	(x+3)				
LCD:	(x+2)	(x+3)	(x+3)	$= (x+2)(x+3)^2$			

Try:

Use a Factor-tree table. Find the LCD for $\frac{1}{z^2-25} + \frac{1}{5z+25} + \frac{1}{5z-25}$:

			
$\frac{1}{z^2-25}$			
$\frac{1}{5z+25}$			
$\frac{1}{5z-25}$			
LCD:			

© Dr. Susan Harrison