Applications: Geometry (Angles)

[1	1
Acute angle:	Right angle:	Obtuse angle:	Straight angle:
An angel whose	An angle whose measure is	An angle whose measure	An angle whose measure
measure is greater than	90°	is greater than 90° and	is 180°
0° and less than 90°		less than 180°	
	Ĺ		·
Complementary angles:	Supplementary angles:	Vertical angles:	Triangle:
Two angles that form a	Two angles that form a	A pair of opposite angles	An enclosed figure
right angle; the sum of	straight line; the sum of	formed by two	composed of three sides.
their measures add to	their measures add to 180°	intersecting lines.	1
90°	1	D A B C	
70*		Vertical angles are equal.	The sum of the three angles within the triangle
4 20"		In the picture above, the C and the	13 1 00 .
If one angle is 70 ⁰ then		$m \angle A = m \angle C$ and the	
the complement of that	If one angle is 60° then the	$m \angle D = m \angle B$.	
angle is 20°	supplement of that angle is		
angle is 20°.	120 [°] .		

Using these definitions of angles, if one knows the measurement of one angle formed by intersection lines, then the measurements of the other three can easily be determined.

If $m \angle A = 110^{\circ}$, then $m \angle C = 110^{\circ}$ because they are vertical angles. The $m \angle B = 70^{\circ}$ because $\angle A$ and $\angle B$ are supplementary angles. Since $\angle D$ and $\angle B$ are vertical angles, then $m \angle D = 70^{\circ}$. TRY:

If $m \angle A = 50^\circ$, find the complement and the supplement of $\angle A$.

Find the measure of the missing angles in:

10x-14 7x+13

Find the measure of the missing angles in:

3x+14 x-2

Four times the complement of an angle is 45 $^\circ$ less than its supplement. Find the measure of the angle, its complement, and its supplement.